Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.

Identifieur interne : 000524 ( Main/Exploration ); précédent : 000523; suivant : 000525

Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.

Auteurs : Alistair Harrison ; Beth D. Baker [États-Unis] ; Robert S. Munson [États-Unis]

Source :

RBID : pubmed:25368297

Descripteurs français

English descriptors

Abstract

The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen.

DOI: 10.1128/JB.01973-14
PubMed: 25368297
PubMed Central: PMC4272597


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.</title>
<author>
<name sortKey="Harrison, Alistair" sort="Harrison, Alistair" uniqKey="Harrison A" first="Alistair" last="Harrison">Alistair Harrison</name>
<affiliation>
<nlm:affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA alistair.harrison@nationwidechildrens.org.</nlm:affiliation>
<wicri:noCountry code="subField">USA alistair.harrison@nationwidechildrens.org.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Baker, Beth D" sort="Baker, Beth D" uniqKey="Baker B" first="Beth D" last="Baker">Beth D. Baker</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Munson, Robert S" sort="Munson, Robert S" uniqKey="Munson R" first="Robert S" last="Munson">Robert S. Munson</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25368297</idno>
<idno type="pmid">25368297</idno>
<idno type="doi">10.1128/JB.01973-14</idno>
<idno type="pmc">PMC4272597</idno>
<idno type="wicri:Area/Main/Corpus">000583</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000583</idno>
<idno type="wicri:Area/Main/Curation">000583</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000583</idno>
<idno type="wicri:Area/Main/Exploration">000583</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.</title>
<author>
<name sortKey="Harrison, Alistair" sort="Harrison, Alistair" uniqKey="Harrison A" first="Alistair" last="Harrison">Alistair Harrison</name>
<affiliation>
<nlm:affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA alistair.harrison@nationwidechildrens.org.</nlm:affiliation>
<wicri:noCountry code="subField">USA alistair.harrison@nationwidechildrens.org.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Baker, Beth D" sort="Baker, Beth D" uniqKey="Baker B" first="Beth D" last="Baker">Beth D. Baker</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Munson, Robert S" sort="Munson, Robert S" uniqKey="Munson R" first="Robert S" last="Munson">Robert S. Munson</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="eISSN">1098-5530</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Haemophilus influenzae (drug effects)</term>
<term>Haemophilus influenzae (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Iron (metabolism)</term>
<term>Oxidants (pharmacology)</term>
<term>Oxidative Stress (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalase (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Haemophilus influenzae (effets des médicaments et des substances chimiques)</term>
<term>Haemophilus influenzae (métabolisme)</term>
<term>Oxydants (pharmacologie)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Catalase</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Haemophilus influenzae</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Haemophilus influenzae</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Catalase</term>
<term>Fer</term>
<term>Haemophilus influenzae</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Oxydants</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
<term>Oxidants</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25368297</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5530</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>197</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J Bacteriol</ISOAbbreviation>
</Journal>
<ArticleTitle>Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.</ArticleTitle>
<Pagination>
<MedlinePgn>277-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JB.01973-14</ELocationID>
<Abstract>
<AbstractText>The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen. </AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>Alistair</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA alistair.harrison@nationwidechildrens.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Beth D</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Munson</LastName>
<ForeName>Robert S</ForeName>
<Initials>RS</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Ohio, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI077897</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-AI077897</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006193" MajorTopicYN="N">Haemophilus influenzae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25368297</ArticleId>
<ArticleId IdType="pii">JB.01973-14</ArticleId>
<ArticleId IdType="doi">10.1128/JB.01973-14</ArticleId>
<ArticleId IdType="pmc">PMC4272597</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2003 Jun;71(6):3454-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12761130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2013 Aug;35(8):1223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2003;57:395-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1988 Feb;56(2):331-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jun 3;240(4857):1302-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3287616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Dec;6(12B):2646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1340475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1997 Jun;15(9):955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1997 Sep;23(3):157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9281473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jul;187(13):4627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15968074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2006;6:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Dec;62(5):1357-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Feb;189(3):1004-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jun;64(5):1375-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17542927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Aug;37(2):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:755-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Jul;68(7):3990-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10858213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2001 Sep 11;203(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2009 Jan;28(1):43-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1800(8):798-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20138126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1800(8):732-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2011 Feb;110(2):375-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Apr;194(8):1927-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 4;287(19):15544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22411989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2012;2:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2012;2:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2012;2:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2013 Apr;81(4):1221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23381990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Jul;11(7):443-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23712352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2003 Mar;25(5):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Harrison, Alistair" sort="Harrison, Alistair" uniqKey="Harrison A" first="Alistair" last="Harrison">Alistair Harrison</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Baker, Beth D" sort="Baker, Beth D" uniqKey="Baker B" first="Beth D" last="Baker">Beth D. Baker</name>
</region>
<name sortKey="Munson, Robert S" sort="Munson, Robert S" uniqKey="Munson R" first="Robert S" last="Munson">Robert S. Munson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000524 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000524 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25368297
   |texte=   Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25368297" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020